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e APO does not require inversion, and remains stable.

® One use case of APO is to tune hyperparameters of an existing optimizer: when

Amortized Proximal Optimization (APO) tuning the LR for SGD, we have ¢ = 1 and usgp(0, 7, B) = 8 — nVeT5(0)

Learning Rate Adaptation

e Consider an update rule u parameterized by a vector ¢
which updates the network weights @ on a mini-batch B%):

APO for Structured Preconditioner Adaptation
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e APO can adapt the preconditioning matrix P, allowing the update rule to
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represent the preconditioning matrix as the product of smaller matrices:

A
| WSDHU(H, b, B) — 9H2} . Ps = (A ® B)diag(vec(S))*(A @ B)' e Test accuracy and learning rate adaptation for WRN-28-10
2 . e
on CIFAR-10, using SGDm as the base optimizer.
e APO outperforms the best fixed LR, and is competitive
with the step schedule.

e By adapting a parametric update rule, we can amortize the e While EKFAC uses complicated covariance estimation and eigenvalue
cost of minimizing the proximal objective over training. decomposition to construct the block matrices, in APO, we meta-learn these
block matrices directly.




