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Proximal Point Method

• Many optimization algorithms used in machine learning
can be seen as approximations to an idealized algorithm
called the proximal point method (PPM).

• The stochastic PPM iteratively minimizes a loss
JB : Rm → R on a mini-batch B, plus a proximity term
that penalizes the discrepancy from the current iterate:

θ(t+1)← arg min
u∈Rm

JB(t)(u) + λWSDDW(u,θ
(t))︸ ︷︷ ︸

weight-space discrepancy

+λFSDEx̃[DF(u,θ
(t), x̃)]︸ ︷︷ ︸

function-space discrepancy

Here, DF(u,θ(t), x̃) = ρ(f (x̃;u), f (x̃;θ(t))), where ρ is an
output-space discrepancy function.

Connections to Second-Order Optimization

Method Loss Approx. FSD WSD

Gradient Descent 1st-order - ✓

Hessian-Free 2nd-order - ✓

Natural Gradient 1st-order 2nd-order ✗

Proximal Point Exact Exact ✓

• Minimizing the proximal objective exactly is uneconomical.
• Various first- and second-order optimization algorithms can

be interpreted as minimizing approximations of the
proximal objective, using 1st or 2nd order Taylor expansions
of the loss or FSD terms.

• When taking a 1st-order approximation to the loss and a
2nd-order approximation to the FSD, the update rule is
given in closed form as:

θ(t+1) ≈ θ(t) − (λFSDG + λWSDI)
−1∇θJB(θ(t)),

where G is the Hessian of the FSD term.

Amortized Proximal Optimization (APO)

• Consider an update rule u parameterized by a vector ϕ
which updates the network weights θ on a mini-batch B(t):

θ(t+1)← u(θ(t),ϕ,B(t))
• We propose to directly minimize a proximal meta-objective

with respect to the optimization parameters ϕ:

Q(ϕ) =EB∼D
[
JB(u(θ,ϕ,B))

+ λFSDE(x̃,·)∼D [DF(u(θ,ϕ,B),θ, x̃)]

+
λWSD

2
∥u(θ,ϕ,B)− θ∥2

]
.

• By adapting a parametric update rule, we can amortize the
cost of minimizing the proximal objective over training.

APO Algorithm

Current 
Parameters

Loss on Current Minibatch

Weight-Space Discrepancy (WSD)

Function-Space Discrepancy (FSD)

1-Step 
Lookahead 
Parameters

Mini-batch for 
Gradient Step

Mini-batch for
FSD Term

Step w/ Optimization Parameters 

Meta-Objective

• In each meta-optimization step, we perform a one-step lookahead to obtain
updated parameters θ′(ϕ), where ϕ denotes optimization parameters (e.g. the
LR η or preconditioner P). Then ϕ is updated via the meta-gradient ∇ϕQ(ϕ).

while not converged, iteration t do
B ∼ Dtrain ▷ Sample mini-batch to compute the gradient and loss term
if t mod K = 0 then ▷ Perform meta-update every K iterations
B′ ∼ Dtrain ▷ Sample additional mini-batch to compute the FSD term
θ′(ϕ) := u(θ,ϕ,B) ▷ Compute the 1-step lookahead parameters
Q(ϕ) := JB (θ′(ϕ)) + λFSD

|B′|
∑

(x̃,·)∈B′DF(θ
′(ϕ),θ, x̃) + λWSD

2 ∥θ
′(ϕ)− θ∥22

ϕ← ϕ− α∇ϕQ(ϕ) ▷ Update optimizer parameters
end if
θ ← u(θ,ϕ,B) ▷ Update model parameters

end while

• Compute Cost: Computing ∇ϕQ(ϕ) requires 3 forward passes + a backward
pass through the 1-step unrolled computation graph. We perform a
meta-update once every K iterations.

• Memory Cost: APO requires 2× the model memory for the 1-step unroll.

APO for Learning Rate Adaptation

• One use case of APO is to tune hyperparameters of an existing optimizer: when
tuning the LR for SGD, we have ϕ = η and uSGD(θ, η,B) = θ − η∇θJB(θ)

APO for Structured Preconditioner Adaptation

• APO can adapt the preconditioning matrix P, allowing the update rule to
flexibly represent various second-order updates.

• Under appropriate assumptions, the optimal P that minimizes Q(P) is
equivalent to different 2nd-order updates, depending on the choice of FSD.

• To scale to large neural nets, we use the EKFAC structured parameterization,
which also ensures that P is PSD. For the weight matrix W of a layer, we
represent the preconditioning matrix as the product of smaller matrices:

PS = (A⊗ B)diag(vec(S))2(A⊗ B)⊤

• While EKFAC uses complicated covariance estimation and eigenvalue
decomposition to construct the block matrices, in APO, we meta-learn these
block matrices directly.

Preconditioner Tuning Experiments
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Poorly Conditioned Regression

Classification Tasks
Task Model SGDm Adam KFAC APO-P

C-10 LeNet 75.73 73.41 76.63 77.42
C-10 AlexNet 76.27 76.09 78.33 81.14
C-10 VGG16 91.82 90.19 92.05 92.13
C-10 ResNet-18 93.69 93.27 94.60 94.75

C-100 AlexNet 43.95 41.82 46.24 52.35
C-100 VGG16 65.98 60.61 61.84 67.95
C-100 ResNet-18 76.85 70.87 76.48 76.88

IWSLT14 Transformer 31.43 34.60 - 34.62

Low Precision (16-bit) Training

Task Model SGDm KFAC APO-P

CIFAR-10 LeNet 75.65 74.95 77.25
CIFAR-10 ResNet-18 94.15 92.72 94.79
CIFAR-100 ResNet-18 73.53 73.12 75.47

• Low-precision training presents a challenge for second-order
optimizers such as KFAC which rely on matrix inverses
that may be sensitive to quantization noise.

• APO does not require inversion, and remains stable.

Learning Rate Adaptation
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• Test accuracy and learning rate adaptation for WRN-28-10
on CIFAR-10, using SGDm as the base optimizer.

• APO outperforms the best fixed LR, and is competitive
with the step schedule.


