EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Motivation & Summary

- Exploiting correlations between factors of variation can increase performance on noisy data.
- But correlations are often not robust: they may change between domains, datasets, or applications
- Minimizing the MI between latent subspaces fails when attributes are correlated.
- We enforce subspace independence conditioned on available attributes, which removes only dependencies that are not due to the correlations structure in the data.

Problem Setup

- We have noisy data x = g(s) where $s = (s_1, s_2, \ldots, s_K)$ are the underlying factors of variation, which may be correlated
- **Goal:** Find a mapping to a latent space, $f(x) = z = (z_1, z_2, \dots, z_K)$ such that we can recover the GT attributes via linear functions $\hat{s}_k = R_k z_k \approx s_k$.
- **Goal:** Learn a model robust to correlation shifts: if we train on data where $corr(s_i, s_j) > 0$, then we want the resulting model to perform well on uncorrelated data $corr(s_i, s_j) = 0$, or anticorrelated data, $corr(s_i, s_j) < 0$.

Objective Functions for Disentanglement

- **Base:** minimizing a supervised loss L (e.g., MSE or cross-entropy), $\sum_{i=1}^{K} L(\hat{s}_i, s_i)$
- 2. **Base+MI:** minimizing the unconditional mutual information between subspaces in addition to the supervised loss, $\sum_{i=1}^{K} L(\hat{s}_i, s_i) + I(z_1, \ldots, z_K)$
- 3. Base+CMI: minimizing the conditional mutual information between subspaces conditioned on observed attributes, in addition to the supervised loss, $\sum_{i=1}^{K} \left[L(\hat{s}_{i}, s_{i}) + I(z_{i}; z_{-i} \mid s_{i}) \right]$

Disentanglement with Correlated Variables

• Consider a linear generative model with correlated Gaussian source variables s, given by:

 $\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n}$, $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{s}})$, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{n}})$

where C_s and C_n are covariances for the source and noise variables.

Disentanglement and Generalization Under Correlation Shifts

Christina M. Funke^{*1}, Paul Vicol^{*2, 3}, Kuan-Chieh Wang^{2, 3}, Matthias Kümmerer^{† 1}, Richard Zemel^{† 2, 3}, Matthias Bethge^{† 1} ¹University of Tübingen, ²University of Toronto, ³Vector Institute, *shared first, [†]shared senior

Adversarial Minimization of Conditional Mutual Information

& train the encoder adversarially • For most tasks, there is no closed form for MI/CMI. We propose an adversarial approach to minimize CMI, based on batchwise shuffling of latent subspaces.

Full Supervision Does Not Yield Disentanglement

Encoder

Inputs

	Base	Base + MI	Base + CMI
VE, Training (Corr $= 0.8$)	91.9%	69.8%	90.9%
VE, Test (Corr $= 0$)	87.6%	65.0%	90.9%
M (where $\hat{s} = Mx$)	$\begin{pmatrix} 0.81 \ 0.14 \\ 0.14 \ 0.81 \end{pmatrix}$	$\begin{pmatrix} 1.07 & -0.46 \\ -0.46 & 1.07 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

• Performance drops when the correlation between s_1 and s_2 shifts at test time. Tries to make use of the assumed correlation between s_1 and s_2 to counteract $\bullet \rightarrow$ information lost due to noise, but this correlation is no longer present.

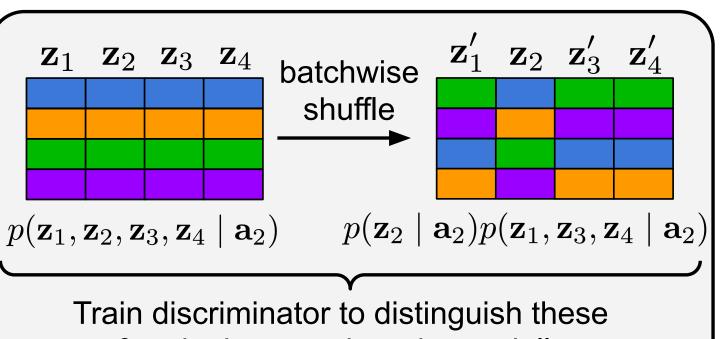
Unconditional Disentanglement Fails Under Correlation Shift

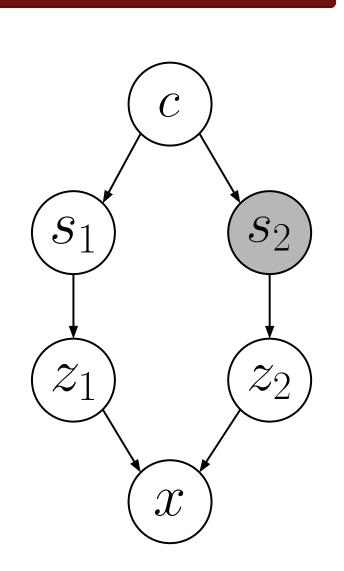
- There is correlation between the sources s_1 and s_2 and therefore $I(s_1; s_2) > 0$.
- By enforcing independence, at least one of the subspaces cannot contain all relevant information about its target value
- The optimal solution under the constraint of minimal MI, $I(z_1; z_2) = 0$, fails to model the in-distribution correlated training data.

Conditional Disentanglement is Robust to Correlation Shift

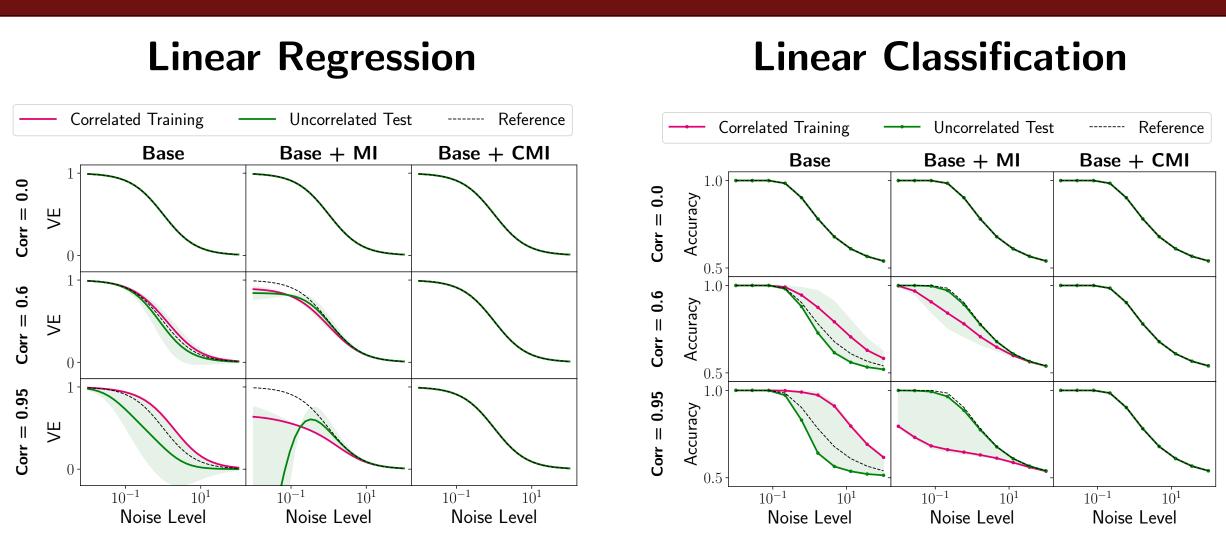
- z_1 and z_2 are independent *conditioned on either of* s_1 *or* s_2 .
- Enforcing independence *conditioned on each of the source* variables is sufficient to yield a robust disentangled representation: $I(z_1; z_2 | s_1) = I(z_1; z_2 | s_2) = 0$
- We desire that z_1 and z_2 share *as little information as possible* (given the GT correlation), to improve robustness to shifts.
- z_1 necessarily contains information about s_2 ; we enforce that it does not contain any more information about z₂ than necessary via $I(z_1; z_2|s_2)$

MI Minimization Conditioned on \mathbf{a}_2

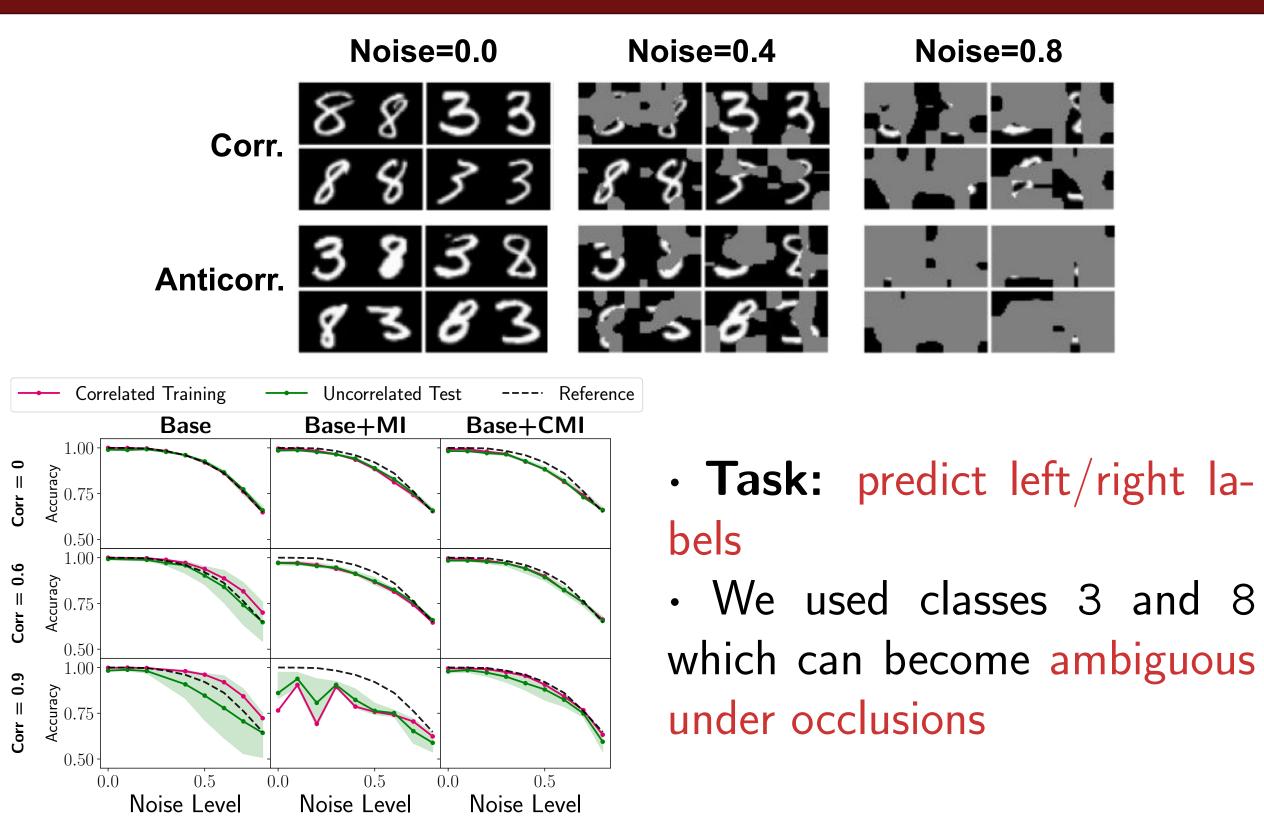




Linear Examples

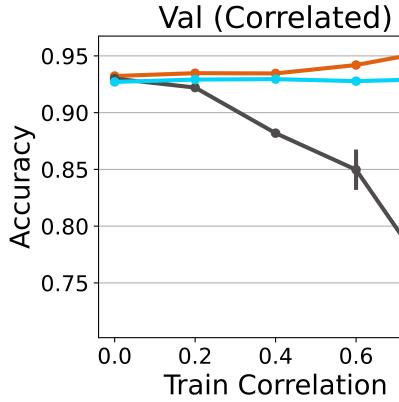


Occluded Multi-Digit MNIST



Correlated CelebA

Corr. Train Data



• Impact of the correlation strength and noise level • Magenta: performance on correlated training data; Green:

performance on test data with a range of correlation shifts

UNIVERSITY OF

DNTO

We used classes 3 and 8 which can become ambiguous

• We used attributes Male and Smiling that we know a priori are not causally related. • Minimizing CMI has a larger effect for stronger correlations, but does not harm performance for low corr. Base + MI Test (Uncorrelated) Test (Anticorrelated)

0.2 0.4 0.4 0.6 0.8 0.80.0 0.6 0.80.0 0.2 Train Correlation Train Correlation