

Motivation

- Hyperparameters such as architecture choice, data augmentation, and dropout are crucial for neural net generalization, but difficult to tune.
- Grid search, random search, and Bayesian optimization treat hyperparameter tuning as a black-box problem, which does not scale to high-dimensional hyperparameters.
- Hyperparameter tuning is a bilevel optimization problem: $egin{aligned} oldsymbol{\lambda}^* &= rg\min \mathcal{L}_V(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{\lambda})) & ext{s.t.} & oldsymbol{w}^*(oldsymbol{\lambda}) &= rg\min \mathcal{L}_T(oldsymbol{\lambda}, \mathbf{w}) & \ \mathbf{w}^*(oldsymbol{\lambda}) & ext{s.t.} & oldsymbol{w}^*(oldsymbol{\lambda}) &= rg\min \mathcal{L}_V(oldsymbol{\lambda}, \mathbf{w}) & \ \mathbf{w}^*(oldsymbol{\lambda}) &= rg\min \mathcal{L}_V(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{\lambda})) & ext{s.t.} & oldsymbol{w}^*(oldsymbol{\lambda}) &= rg\min \mathcal{L}_V(oldsymbol{\lambda}, \mathbf{w}) & \ \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{\lambda})) &= \ \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{\lambda}, \mathbf{w}^*(oldsymbol{\lambda}) &= \ \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{\lambda})) &= \ \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{\lambda})) &= \ \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*(oldsymbol{w}, \mathbf{w}^*($
- We approximate the best-response function $\mathbf{w}^*(\boldsymbol{\lambda})$ with a hypernetwork $\mathbf{w}_{\phi}(\boldsymbol{\lambda})$, called a Self-Tuning Network (STN).

Summary

- We propose a compact architecture for approximating neural net best-responses, that can be used as a drop-in replacement for existing deep learning modules.
- Our training algorithm alternates between approximating the best-response around the current hyperparameters and optimizing the hyperparameters with the approximate best-response.
- This yields a gradient-based algorithm that is (1) computationally inexpensive, (2) can optimize all regularization hyperparameters including discrete hyperparameters, and (3) scales to large NNs.
- Our approach discovers hyperparameter trajectories that can outperform fixed hyperparameter values.

Self-Tuning Network (STN) Training Algorithm

Initialize: Hypernetwork parameters ϕ , hyperparameters λ while not converged do

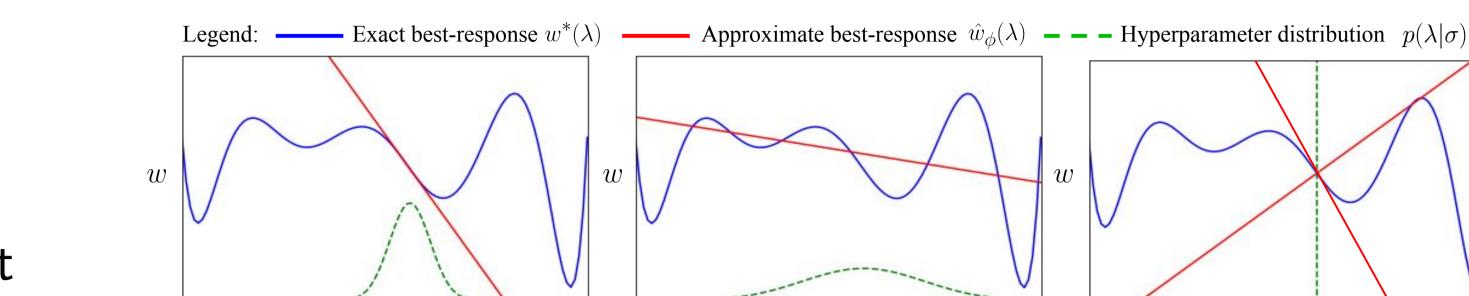
$$\begin{aligned} & \text{for } t = 1, \dots, T_{train} \text{ do} \\ & \epsilon \sim p(\epsilon | \sigma) \\ & \phi \leftarrow \phi - \alpha_1 \nabla_{\phi} \left[\mathcal{L}_T (\boldsymbol{\lambda} + \epsilon, \hat{\mathbf{w}}_{\phi} (\boldsymbol{\lambda} + \epsilon)) \right] \\ & \text{for } t = 1, \dots, T_{valid} \text{ do} \\ & \epsilon \sim p(\epsilon | \sigma) \\ & \hat{\mathcal{L}}_V (\boldsymbol{\lambda}, \sigma) \leftarrow \mathcal{L}_V (\boldsymbol{\lambda} + \epsilon, \hat{\mathbf{w}}_{\phi} (\boldsymbol{\lambda} + \epsilon)) - \tau \mathbb{H}[p(\epsilon | \sigma)] \\ & (\boldsymbol{\lambda}, \sigma) \leftarrow (\boldsymbol{\lambda}, \sigma) - \alpha_2 \nabla_{\boldsymbol{\lambda}, \sigma} \left[\hat{\mathcal{L}}_V (\boldsymbol{\lambda}, \sigma) \right] \end{aligned}$$

Self-Tuning Networks for Hyperparameter Optimization

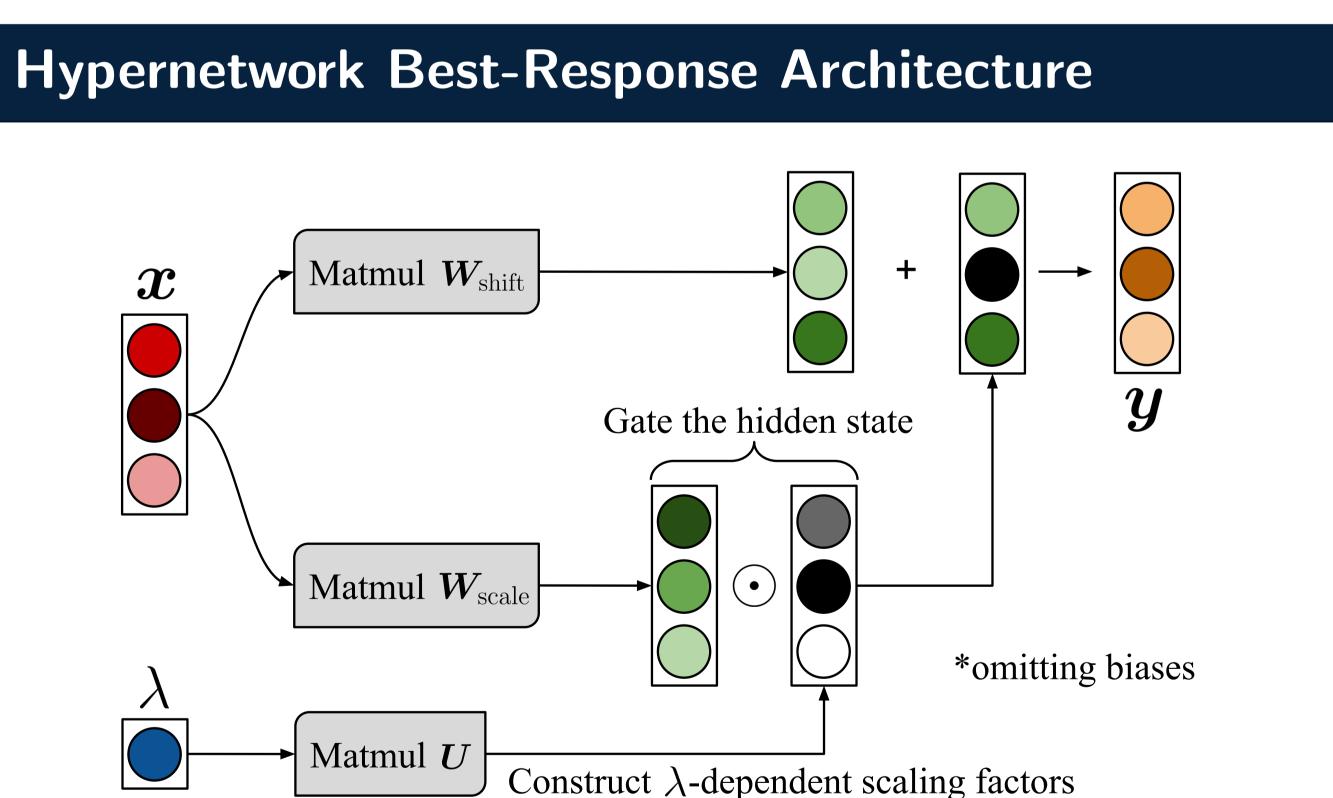
Matthew MacKay*, Paul Vicol*, Jon Lorraine, David Duvenaud, Roger Grosse

University of Toronto & Vector Institute

Sampling Hyperparameters



- Just right \rightarrow the gradient of the approximation will match that of the best-response.
- Too wide \rightarrow the hypernetwork may be insufficiently flexible to model the best-response, and the gradients will not match.
- Too small \rightarrow the hypernetwork will match the best-response at the current hyperparameter, but may not be locally correct.
- We re-parameterize the hyperparameter λ to lie in $\mathbb R$ and use noise distribution $p(\epsilon | \sigma) = \mathcal{N}(0, \sigma)$.

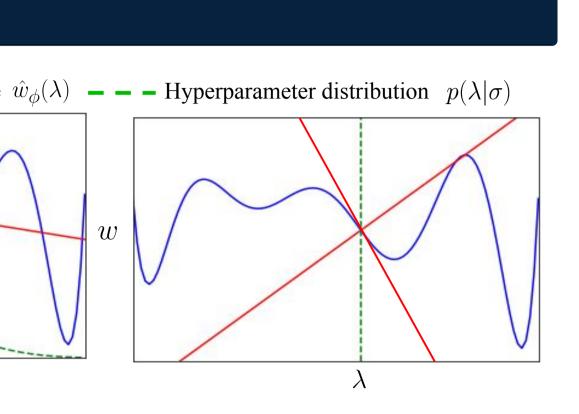


• We scale and shift the network's hidden units (\equiv the rows of weights and biases) by an amount which depends on our hyperparameters:

$$\hat{\mathcal{W}}_{\phi}(oldsymbol{\lambda}) = \mathcal{W}_{\mathsf{shift}} + (oldsymbol{U}oldsymbol{\lambda})$$

 $\hat{b}_{\phi}(oldsymbol{\lambda}) = b_{\mathsf{shift}} + (Coldsymbol{\lambda}) \odot_{\scriptscriptstyle \mathrm{TOW}} b_{\mathsf{scale}}$

• Memory efficient (roughly 2x no. of parameters) and scales well to high dimensions.



 $\odot_{\rm row}$ $W_{\rm scale}$

Hyperparameter Trajectories

- outperform fixed hyperparameters.
- a gradually increasing dropout probability.
- hyperparameter value.

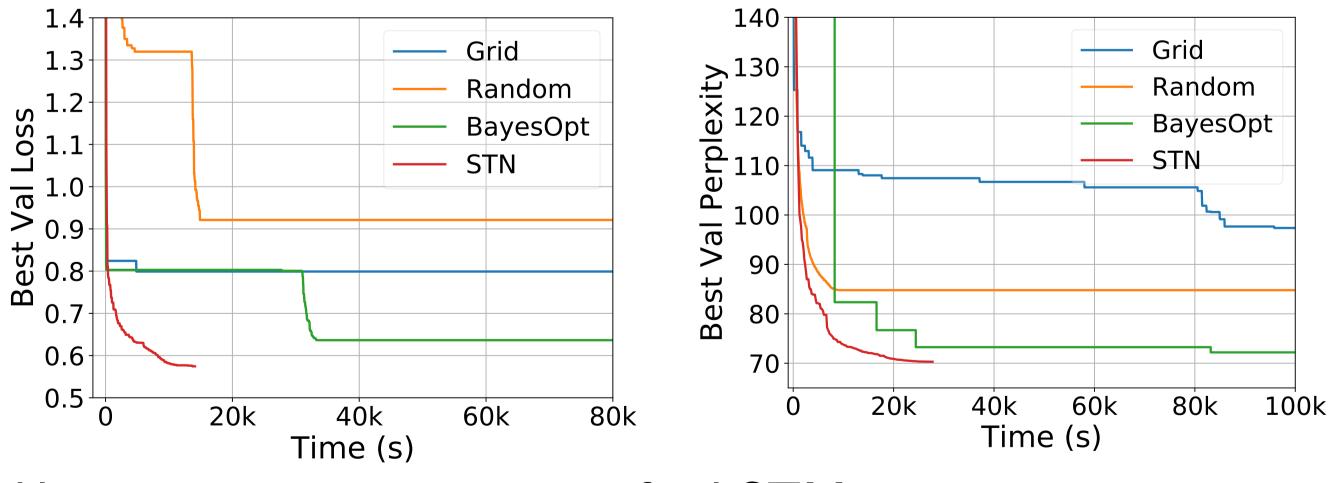
Method	Val
p = 0.68 (Fixed)	85.83
$p \sim \mathcal{N}(0.68, \sigma = 0.05)$	85.87
$p=0.68+0.1\sin(k\pi)$	85.29
p = 0.78 (Converged STN)	89.6
STN (Ours)	82.5
Following STN Trajectory	82.87
Comparing hyporparamet	or tr

Comparing hyperparameter trajectories

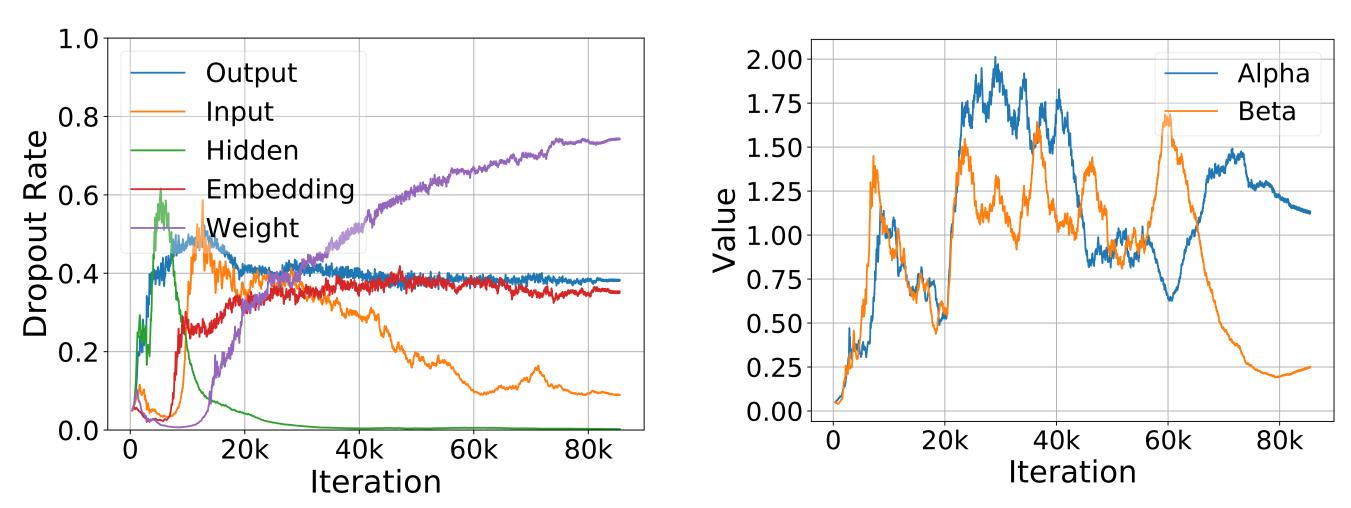
Real-World Datasets

	РТВ		CIFAR-10	
Method	Val Perplexity	Test Perplexity	Val Loss	Test Loss
Grid Search	97.32	94.58	0.794	0.809
Random Search	84.81	81.46	0.921	0.752
Bayesian Optimization	72.13	69.29	0.636	0.651
STN	70.30	67.68	0.575	0.576
Final validation/test performance on PTB and CIFAR-10				

CNN time comparison



• Hyperparameter trajectories for LSTM tuning



• STNs discover hyperparameter trajectories which can

• For a single dropout rate, STNs implement a curriculum with

• The same trajectory is followed regardless of the initial

