

Motivation

- Bayesian neural networks (BNNs) are a principled way to reason about uncertainty.
- MCMC methods allow us to sample from the posterior, but have high storage cost.

Summary

- We introduce a framework called Adversarial Posterior **Distillation (APD)** that uses a Generative Adversarial Network (GAN) to model the BNN posterior.
- We show that APD performs as well as the original posterior samples in the following standard testbeds for BNNs while using less storage:
- Anomaly detection
- Active Learning (exploration)
- Defense against adversarial attacks
- We analyze the suitability of using GANs for APD.

Background

• Stochastic Gradient Langevin Dynamics (SGLD) is an MCMC method that works with mini-batches:

$$\Delta \theta^{t} = \frac{\epsilon^{t}}{2} \left(\nabla \log p(\theta^{t}) + \frac{N}{n} \sum_{i=1}^{n} \nabla \log p(y_{i}^{t} | x_{i}^{t}, \theta) \right)$$

• GANs can sample from rich posterior distributions. We used the WGAN with gradient penalty (WGAN-GP).

Method

Algorithm Offline APD Distillation

- 1: Sample $\{\theta^t\}_{t=1}^T$ using MCMC updates, where T denotes the number of updates.
- 2: Optimize G with WGAN-GP loss using $\{\theta^t\}_{t=1}^T$ as real data.

• Online algorithm has sampling and GAN updates interleaved

Adversarial Distillation of Bayesian Neural Network Posteriors Kuan-Chieh Wang^{†‡}, Paul Vicol^{†‡}, James Lucas^{†‡}, Li Gu[†], Roger Grosse^{†‡}, Richard Zemel^{†‡}

[†]University of Toronto [‡]Vector Institute

Method (Cont.)

Toy Example

- Problem Setup: Classify mixture of 2 Gaussians
- The deterministic network has a hard decision boundary, while SGLD is uncertain away from data.
- APD gradually learned to model SGLD.

Anomaly Detection

- Task: train only on in-distribution data (i.e. MNIST), and evaluate detection of out-of-distribution data.
- Model: fully connected neural network (784-400-400-10)

	Dataset		SGD		MC	-Drop	out	Ç	SGLD		ΑΡΙ) (Ou	ırs)
Det.	area under	ROC	PR+	PR-	ROC	PR+	PR-	ROC	PR+	PR-	ROC	PR+	PR-
	notMNIST	64.2	67.6	54.4	88.0	87.2	82.1	98.1	97.8	98.3	97.8	97.4	98.1
	OmniGlot	84.2	84.9	78.7	91.5	90.8	90.3	99.0	98.8	99.1	98.8	98.6	99.1
VR	CIFAR10bw	61.4	66.1	52.2	90.1	88.5	86.5	97.4	97.0	97.5	96.9	96.5	96.7
	Gaussian	67.3	70.2	57.4	91.3	89.8	89.0	99.6	99.6	99.7	99.6	99.5	99.6
	Uniform	85.4	80.7	85.8	93.6	91.2	94.8	99.8	99.8	99.9	99.8	99.7	99.8

• VR stands for variations-ratio

$$y|x, \theta^t), \theta^t \sim p(\theta|\mathcal{D})$$

 $y|x, G(z^t)), z^t \sim \mathcal{N}(0, I)$

Why GANs? / Storage Savings

Active Learning

• For BNNs, active learning using entropy was able to learn faster than random acquisition.

Adversarial Example Detection - MNIST

under each source model.

· 'Course' sofoso to the	Source	Attack	MC-	SGLD	Ours
Source refers to the		Туре	Drop		
network used to		FGSM	89.53	94.01	91.70
generate attacks	IVIC-Drop	PGD	88.37	93.95	91.63
 Here we used 		FGSM	54.99	83.76	75.93
	JGLD	PGD	56.91	84.98	82.80
	0	FGSM	54.51	83.05	86.02
variance, $U(x)$:	Ours	PGD	54.98	88.01	93.15
	' T	T	τ		

$$U(x) =$$

• We measured the AUROC for FGSM and PGD adversaries

(1) $= \frac{1}{T} \sum_{t=1}^{T} \sum_{t=1}^{T} (\frac{1}{T} \sum_{t=1}^{T} t)^{T} (\frac{1}{T} \sum_{t=1}^{T} t$