Google DeepMind

Motivation

- Modeling the data distribution exactly often does not align with desired behavior (e.g., generating images with certain aesthetic qualitites) ightarrow motivates fine-tuning.
- Human preference data can be used to train reward models parameterized by neural networks.

Overview

- Direct Reward Fine-Tuning (DRaFT) is a simple and effective method for fine-tuning diffusion models to maximize differentiable reward functions, such as scores from human preference models.
- Key idea: Use gradient-based optimization to maximize differentiable rewards:

 $J(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{c} \sim p_{\mathbf{c}}, \mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [r(\mathsf{sample}(\boldsymbol{\theta}, \mathbf{c}, \mathbf{x}_{T}), \mathbf{c})]$

DRaFT Ingredients

- **LoRA:** Reduces the # of parameters to optimize, reducing the memory cost of fine-tuning.
- Gradient Checkpointing: store the input latent and re-materialize the UNet activations during backprop.
- Truncated Backpropagation Through Sampling

Fine-Tuning for Aesthetic Quality

- Sample efficiency of methods maximizing scores from the LAION Aesthetic Classifier.
- DRaFT is significantly more sample-efficient than RL-based methods.

Directly Fine-Tuning Diffusion Models on Differentiable Rewards

Kevin Clark*, Paul Vicol*, Kevin Swersky, David J. Fleet

Vanilla DRaFT: Backpropagate through the full 50-step sampling chain.

DRaFT-*K*: Backpropagate through the last *K* steps of sampling. • **DRaFT-LV**: Variant of DRaFT-1 with lower-variance gradient estimates. Noise the generated image *n* times, and sum the reward gradient over these examples. • Using n = 2 is around $2 \times$ more efficient than DRaFT-1 while adding $\sim 10\%$ overhead.

Improving the Aesthetic Quality of Stable Diffusion

• DRaFT yields more detailed and stylized images than baseline Stable Diffusion

A stunning beautiful oil painting of a lion, cinematic lighting,

dramatic lighting

Qualitative Comparison of Reward Functions

Comparison of generations from DRaFT models fine-tuned on the LAION Aesthetic Classifier, Human Preference Score v2, and PickScore reward functions.

Prompt: *A photo of a deer*

PickScore reward

Prompt: *A painting of a deer*

Aesthetic reward

PickScore reward

Prompt: A painting of a deer Aesthetic + HPSv2 Aesthetic + PickScore

Google DeepMind, *Equal Contribution

Mixing LoRA Parameters

• We can combine the effects of different rewards by taking linear combinations of LoRA parameters

$\boldsymbol{\theta}^{\mathsf{pre}} + \alpha \boldsymbol{\theta}_{\mathsf{LoRA}}^{\mathsf{PickScore}} + \beta \boldsymbol{\theta}_{\mathsf{LoRA}}^{\mathsf{HPSv2}}$

PickScore

Impact of *K* in DRaFT-*K*

- Gradients tend to explode as *K* increases.
- Even with small K, LoRA params affect all sampling steps.

Diffusion Adversarial Examples

- Fine-tune a diffusion model such that images generated based on a prompt for a class y (e.g., "mouse") are classified as a different class y' (e.g., "cat") by a ResNet-50 pretrained on ImageNet.
- The classifier is texture-biased: fine-tuned images have cat textures while keeping the animal shapes intact.

Object Detection & Addition/Removal

• We can maximize or minimize scores from an object detection model to add or remove certain object classes.

Object Addition: Fruit Bowl + Strawberries

